
D
A
T
A
10
5
0

C
h
e
a
t
s
h
e
e
t
·S

a
m
u
e
l
S
.
W

a
t
s
o
n

Data

1 All data stored on a computer is ultimately a sequence of bits (0/1). These bits
are endowed with meaning based on a specification.

2 Types of data include plain text, documents, images, video, audio, tabular data,
and many others.

3 Common hierarchical (nested) data formats include XML and JSON:
XML:
<svg version="1.1"

baseProfile="full"
width="300" height="200"
xmlns="http://www.w3.org/2000/svg">

<rect width="100%" height="100%" fill="red" />
<circle cx="150" cy="100" r="80" fill="green" />
<text x="150" y="125" font-size="60" fill="white">SVG</text>

</svg>

JSON:
{

"layout":{
"showlegend": false,
"xaxis":{

"range":[
0.73,
10.27

],
"domain":[

0.03619130941965587,
0.9934383202099738

],
"linecolor":"rgba(0, 0, 0, 1.000)",
"tickcolor":"rgb(0, 0, 0)",
"tickfont":{

"color":"rgba(0, 0, 0, 1.000)",
"size":11

}
}

}
}

4 Tabular data formats include CSV and Parquet. CSV is a plain text format that
uses commas to separate entries and newlines to separate rows. Parquet is a binary
format (looks like gibberish if you interpret the bits of the file as plain text) which
is faster and more space efficient.

Data Systems

1 Organizations use a wide variety of technologies to manage their data. Orga-
nizations’ concerns around data include how and where to store the data, how to
access the data, how to perform calculations on the data, how to process the data
and how and when to cache intermediate results, how to display the data to make
it actionable, and many others.

2 Databases are used to store structured data, because they are designed to pro-
vide guarantees around data integrity and to provide rich access to the data.

3 Bucket storage in the cloud is useful for files which are large and are not struc-
tured enough to go in a database (e.g., image files, video files, PDF files).

4 A data warehouse is a data system in an organizationwhich is highly structured
and carefully curated. A data lake is a central but less structured and/or less curated
repository of data collected by the organization.

5 Data ingestion, storage, cleaning, analytics, and UIs are often related in complex
ways (not a simple pipeline):

Data
Ingestion

Data
Storage

Data
Cleaning

Data
Analytics

User
Interfaces

How computers work

1 Main computer components: CPU (processing), RAM (temporary storage),
hard drive (persistent storage).

2 RAM consists of a sequence of 8-bit chunks called bytes. The index of each byte
is its address.

3 The computer executes a program by loading its bytes into consecutive ad-
dresses in RAM and then reading the bytes in sequence. The CPU may read data
stored at an address by activating the enable wire while putting the bits of that ad-
dress on the address bus or write data by by using the set wire. The bits are read or
written via the data bus.

CPU

RAM

01011000

10101010

11011011

10000111

01000000

11011011

00000000

00000001

00000010

00000011

00000100

00000101

data
bus

address
bus

setenable

4 Bytes (or chunks of bytes) may represent CPU instructions, data (like integers,
floats, or characters), or RAMaddresses. Some instructions can tell the CPU to jump
to a different location in RAM and continue reading bytes from there.

5 CPU operations are synchronized by a clock generator, which fires about a bil-
lion times a second. Machine integer operations can be executed in 1-3 clock cycles,
while more complex operations (like floating point division) can take more like 30
cycles.

6 When you write code in a compiled language (like C, C++, Rust, Go, Haskell,
OCaml, etc.), you create an executable file to be directly executed by the computer.
For programswritten in Python, the executable is not the programyouwrote but the
Python runtime system. The Python runtime interprets your code and changes the
way that it executes accordingly. Other languages that use runtimes include Julia,
R, Java, C#, and Javascript.

7 Many languages (Julia, Java, C#, Javascript, et al) compile parts of your code to
machine code as the program executes; this is called just-in-time compilation. Neither
Python nor R is JIT-compiled unless you’re using a package for that purpose (like
Numba) or a non-standard interpreter (like PyPy).

8 Interpreting code is typically much slower than executing compiled code (typ-
ically 5x-30x). Python, R, and MATLAB manage reasonable performance by con-
necting to compiled libraries—usually written in C, C++, or Fortran—for compute-
intensive tasks. This is why vectorization is an important performance technique in
these languages.

The shell

1 Bytes stored on the hard drive are organized into files. Files are organized hier-
archically into an arbitrarily nested collections of directories (also known as folders).

2 The operating system customarily handles each file according to its file type,
which is customarily indicated by its file extension (like .pdf in resume.pdf).

3 You can interact programmatically with your file system using a program called
a shell. On Unix or macOS, the shell is bash or a close relative.

4 Important shell commands include

• pwd - print the current working directory
• cd - change current working directory
• ls - list the contents of the current directory
• tree - show contents of current working directory (recursively)
• cat - print the contents of a file
• head - print the first so many lines or characters of a file
• mv - move a file
• cp - copy a file
• touch - create a file or update its last-modified time

• curl - make a request to a URL
• wc - count words/lines/characters in a file
• grep - search for text in file contents
• code - open a file in VS Code

5 Set Bash variables like MY_FAVORITE_NUMBER=3. You can access a variable with a
dollar sign, like echo $MY_FAVORITE_NUMBER.

6 Add the line
export PATH="/Users/jovyan/anaconda3/bin:\$PATH"

to your /.bash_profile file to add /Users/jovyan/anaconda3/bin to your PATH vari-
able (if you want to be able to execute programs in that folder by name from the
command line).

7 Piping. The output of a command like echo $PATH, which prints to the screen
by default, may be redirected to a file using the operators > or >> or fed as input to
another bash command on the same line using the pipe operator |.

8 Glob patterns. You can perform an action on many files by including an as-
terisk in the file name. For example, mv img*.png frames/ moves every file in the
current directory whose name starts with img and ends with png into the ‘frames‘
subdirectory of the current directory.

Using Python

1 Tooling for a programming language refers to anything we can use to make the
development experience more pleasant (more efficient, more interactive, less uncer-
tain, etc.).

2 Jupyter is a popular development environmentwhich provides researchers with
tools for combining exposition and code into a single document called a Jupyter
notebook. Under the hood, the file contents of a Jupyter notebooks is a JSON string.

3 Jupyter supports manymagic commandswhich are not part of the Python lan-
guage but which allow us to do various convenient things. For example, the %%sql
magic causes the contents of the cell to be interpreted as SQL code.

4 Jupyter has an edit mode for entering text in cells and a commandmode for ma-
nipulating cells (for example, merging or deleting cells). If there’s a blinking cursor
in a cell, the current mode is edit, and otherwise the current mode is command.
Switching between modes is accomplished with the escape key (edit to command
mode) and the enter key (command to edit mode).

5 Jupyter has many keyboard shortcuts which are worth learning. Cells are
deleted in command mode with two strokes of the d key. You can highlight cells
in command mode by holding shift and using your arrow keys, and you can merge
the highlighted cells into a single cell using shift-m. Insertion of new cells is accom-
plished with either a (insert cell above) or b (insert cell below) in commandmode.
Cells can be switched between Markdown (m) and code (y) in command mode.

6 VS Code is a text editor with many features and extensions to support devel-
opment in many languages, including Python. It has better support than Jupyter
for working with multiple files, debugging (stepping through code), refactoring
(changing the structure of your code), and version control.

7 You can do nearly everything in VS Code through the command palette
(command+shift+p). Start typing words relevant to what you want to do and select
the desired option.

8 Install the Python and Jupyter extensions from the Marketplace (left sidebar),
and you can execute Python code (shift+enter, in a .py file), inspect variables (in
the Jupyter panel that openswhen you execute code), autocomplete variable names,
debug (place a red dot in the gutter and then click the bug icon in the sidebar), and
run your pytest tests.

D
A
T
A
10
5
0

C
h
e
a
t
s
h
e
e
t
·S

a
m
u
e
l
S
.
W

a
t
s
o
n

Version Control with Git

1 Git is the main software that developers use to version control their code.

2 It works using a combination of a command line program (git) and a folder
called .git in the top-level directory of each project being version controlled.

3 You create a new repo by doing git init in the desired directory. Then create a
file, stage it by doing git add --all, and create your initial commit with git commit
-m "initial commit".

4 Your version history consists of a collection of commits (snapshots of your
project directory) which are connected via parent-child relationships.

5 Your changes go through a sequence of zones: files in your working directory
are initially untracked by Git. Then you stage them with git add to prepare a tidy
commit. Then you create a new commit in your version history with git commit -m
"commit message". Lastly, you update GitHub’s copy of your version history with
git push.

working
directory

staging
area

local
repository

remote
repositorystage commit push

6 You will receive code to set your remote repository to a particular repo on
GitHub when you create that repo on GitHub. You can see the current remote URL
with git remote -v.

7 A branch is a pointer to a particular commit. You start a new line of work by
creating a new branch that points to the commit you want to start from, applying
the desired changes, and making new commits.

8 Checking out a branch sets the state of your working directory to the state of the
commit that the branch points to. To preserve any unsaved work in your working
directory, do a git stash. Put that work back into your working directory later with
git stash apply. You will also want to stash when you git pull to get the latest
copy of your code from GitHub.

9 You can merge a branch into yours to bring in that branch’s changes (the ones
added since themost recent common ancestor). Here’swhat it looks like ifwemerge
theirbranch into main:

shared
parent

main

my commit

my second
commit

merge commit

main

their
commit

theirbranch

previous
commit

initial
commit

shared
parent

my commit their
commit

theirbranch

my second
commit

main

previous
commit

initial
commit

Relational data

1 A relation is a set of named tuples (with a common set of names) and can be
visualized as a table with column headers. The relational data model represents
data as a collection of relations.

2 Relational algebra is a collection of mathematical operations that may be be

performed on relations:

• Projection. Subsetting columns.

• Restriction. Subsetting rows based on a condition.

• Cartesian product. Forming every possible concatenation of a tuple from
one relation with a tuple from a second relation.

• Sorting. Ordering tuples according to a condition.

• Grouping and aggregation. Applying an aggregation function to the val-
ues in a column, potentially after grouping the tuples in the relation (par-
titioning them according to a condition).

• Renaming. Changing the name of one of the fields in a relation (changing
a column header, essentially).

SQL Queries (PostgreSQL)

1 SQL (Structured Query Language) is the standard language for performing the
relational algebra operations on tables stored in a relational database.

2 SQL is declarative, meaning that we express the result we want to obtain, not
the steps the system is supposed to take to achieve that result.

3 SQL input consists of a sequence of commands. A command is composed of a
sequence of tokens and is terminated by a semicolon.

4 A token can be a keyword, an identifier, a literal, or a special character symbol. Tokens
are separated by whitespace.

5 Keywords are reserved words in the language with special meaning. In the
statement SELECT * FROM birds;, both SELECT and FROM are keywords.

6 Identifiers specify tables, columns, or other database objects (depending on con-
text). birds is an identifier which specifies which table we’re selecting from.

7 Identifiers may be surrounded by double quotes to ensure they are not inter-
preted as keywords and to allow them to use otherwise disallowed characters (like
whitespace).

8 String literals in SQL are enclosed in single quotes. Numeric literals can be en-
tered like 4, 3.2, or 1.925e-3.

9 Queries use the SELECT keyword. The basic structure of a SELECT statement is
SELECT [select_list] FROM [table_expression] [sort_specification];

The table expression is evaluated and then passed to the select list. The sort specifi-
cation (if present) then processes the resulting rows before they are returned.

10 The table expression is an expression that returns a table, like a table name or
another SELECT statement enclosed in parentheses.

11 The select list is a comma-separated list of value expressions, which may consist
of column identifiers, constant literals, or expressions involving function calls and
operators. In this context, the asterisk is a special character meaning ”all columns”.

12 Each value expression may be assigned a specific name using the AS keyword.
SELECT

common_name,
LENGTH(common_name) AS name_length
victory_points + egg_capacity AS total_points,

FROM
birds;

common_name victory_points egg_capacity
American Robin 1 4
Cedar Waxwing 3 3

Ash-Throated Flycatcher 4 4
Southern Cassowary 4 4
Common Nightingale 3 4

↓

common_name name_length total_points
American Robin 14 5
Cedar Waxwing 13 6

Ash-Throated Flycatcher 23 8
Southern Cassowary 18 8
Common Nightingale 18 7

13 The table expressionmay bemodified by further clauses indicated by keywords

like WHERE or GROUP BY or HAVING.

14 The sort specification is a clause of the form ORDER BY [value_expression]
[ASC|DESC], where the value indicated by the value expression is evaluated for each
row and used to perform the sort:

SELECT
*

FROM
birds

WHERE
"set" = 'core' AND wingspan > 25

ORDER BY
wingspan DESC;

common_name set wingspan
American Robin core 43
Cedar Waxwing core 25

Ash-Throated Flycatcher core 30
Southern Cassowary oceania NULL
Common Nightingale european 23

↓

common_name set wingspan
American Robin core 43

Ash-Throated Flycatcher core 30

15 Grouping by a value expression partitions the tuples in a relation into groups
of equal value. If the table expression in a SELECT statement has been grouped, then
each entry in the select list must be either a value that was grouped on or a call to
an aggregate function (like SUM, AVG, MAX, MIN, or COUNT, which reduces a column of
values to a single value).

SELECT fruit,
MAX(LENGTH(common_name)) AS max_name_length
FROM birds
GROUP BY fruit;

common_name fruit
American Robin 1
Cedar Waxwing 2

Ash-Throated Flycatcher 1
Southern Cassowary 2
Common Nightingale 1

↓

common_name fruit
American Robin 1

Ash-Throated Flycatcher 1
Common Nightingale 1

Cedar Waxwing 2
Southern Cassowary 2

↓

fruit max_name_length
1 23
2 18

16 Filter results from a grouped and aggregated relation using a HAVING clause.

17 Use LIMIT [limit] OFFSET [offset] after an ORDER BY clause to return at most
limit records beginning at index offset.

18 Name a temporary table using WITH. Example: select every card fromwhichever
expansion set has the largest average egg capacity:

WITH set_eggs AS (
SELECT "set",
AVG(egg_capacity) AS avg_eggs
FROM birds
GROUP BY "set"
ORDER BY avg_eggs DESC LIMIT 1

)
SELECT * FROM birds
WHERE "set" IN (SELECT "set" FROM set_eggs);

D
A
T
A
10
5
0

C
h
e
a
t
s
h
e
e
t
·S

a
m
u
e
l
S
.
W

a
t
s
o
n

19 A comma-separated list of two relations denotes their Cartesian product. To
look at every (bird card, bonus card) combination:

birds
common_name set wingspan

American Robin core 43
Cedar Waxwing core 25

Ash-Throated Flycatcher core 30
Southern Cassowary oceania NULL
Common Nightingale european 23

Sulphur-Crested Cockatoo oceania 103

bonus_cards
name condition

Passerine Specialist wingspan ≤ 30
Large Bird Specialist wingspan > 64

↓
SELECT * FROM birds, bonus_cards;

common_name set wingspan name condition
American Robin core 43 Passerine Specialist wingspan ≤ 30
Cedar Waxwing core 25 Passerine Specialist wingspan ≤ 30

Ash-Throated Flycatcher core 30 Passerine Specialist wingspan ≤ 30
Southern Cassowary oceania NULL Passerine Specialist wingspan ≤ 30
Common Nightingale european 23 Passerine Specialist wingspan ≤ 30

Sulphur-Crested Cockatoo oceania 103 Passerine Specialist wingspan ≤ 30
American Robin core 43 Large Bird Specialist wingspan > 65
Cedar Waxwing core 25 Large Bird Specialist wingspan > 65

Ash-Throated Flycatcher core 30 Large Bird Specialist wingspan > 65
Southern Cassowary oceania NULL Large Bird Specialist wingspan > 65
Common Nightingale european 23 Large Bird Specialist wingspan > 65

Sulphur-Crested Cockatoo oceania 103 Large Bird Specialist wingspan > 65

20 Cartesian products are usually combined with a WHERE clause. To find which
(bird, bonus card) combinations actually yield bonuses:

SELECT * FROM birds, bonus_cards
WHERE wingspan <= 30 AND condition = 'wingspan ≤ 30'

OR wingspan > 65 AND condition = 'wingspan > 65';

common_name set wingspan name condition
Cedar Waxwing core 25 Passerine Specialist wingspan ≤ 30

Ash-Throated Flycatcher core 30 Passerine Specialist wingspan ≤ 30
Common Nightingale european 23 Passerine Specialist wingspan ≤ 30

Sulphur-Crested Cockatoo oceania 103 Large Bird Specialist wingspan > 65

21 Cartesian productswith restrictions are important enough towarrant their own
syntax: [table1] JOIN [table2] ON [condition]

SELECT * FROM birds JOIN bonus_cards
ON wingspan <= 30 AND condition = 'wingspan ≤ 30'

OR wingspan > 65 AND condition = 'wingspan > 65';

22 Joins come in several flavors:

• JOIN or INNER JOIN. Cartesian product followed by restriction.
• LEFT OUTER JOIN. Inner join followed by adding a single row for each row from the

first table completely eliminated by the restriction. Those rows get NULL values for
second-table fields.

SELECT * FROM birds LEFT OUTER JOIN bonus_cards;
common_name set wingspan name condition

Cedar Waxwing core 25 Passerine Specialist wingspan ≤ 30
Ash-Throated Flycatcher core 30 Passerine Specialist wingspan ≤ 30
Common Nightingale european 23 Passerine Specialist wingspan ≤ 30

Sulphur-Crested Cockatoo oceania 103 Large Bird Specialist wingspan > 65
American Robin core 43 NULL NULL

Southern Cassowary oceania NULL NULL NULL

• RIGHT OUTER JOIN. Same but for eliminated rows from the second table.
• FULL OUTER JOIN. Same but for eliminated rows from either table.
• CROSS JOIN. Cartesian product with no restriction.
• NATURAL JOIN. Inner join on equality comparison of all pairs of identically named

fields.

23 We can take a union of tuples in two relations (with the same field names) us-
ing the UNION operator. We can take a set difference using EXCEPT and the intersection
using INTERSECT.

24 The syntax for a table literal is VALUES (row1), (row2), (row3); To add two
rows manually:

(SELECT common_name, "set" FROM birds)
UNION
(VALUES ('Western Tanager', 'core'),
('Scissor-Tailed Flycatcher', 'core'));

SQL: Modifying Data

1 To add rows to a database:
INSERT INTO

birds(common_name, "set")
VALUES

('Western Tanager', 'core'),
('Scissor-Tailed Flycatcher', 'core');

2 To update rows to a database:
UPDATE

birds
SET

wingspan = 0
WHERE

wingspan IS NULL;

3 To delete rows:
DELETE FROM

birds
WHERE

"set" NOT IN ('core', 'oceania', 'european');

SQL: Managing Tables

1 Creating a new table. To make a new table called birds a text field common_name
which will be used as a primary key, a text field set which is a foreign key for the
name column in another table called expansions, and an integer field wingspanwhich
should not be allowed to be negative:

CREATE TABLE birds (
common_name TEXT PRIMARY KEY,
"set" TEXT REFERENCES expansions(name),
wingspan INTEGER CHECK (wingspan >= 0),

);

2 PostgreSQL

• BIGINT/INT8 signed eight-byte integer
• INTEGER/INT/INT4 signed four-byte integer
• DOUBLE PRECISION/FLOAT8double precision floating-point number (8 bytes)
• REAL/FLOAT4 single precision floating-point number (4 bytes)
• BOOLEAN/BOOL logical Boolean (true/false)
• VARCHAR(n) variable-length character string (max n characters)
• TEXT variable-length character string
• DATE calendar date (year, month, day)
• MONEY currency amount
• NUMERIC [(p, s)] exact numeric of selectable precision
• TIMESTAMP date and time
• UUID universally unique identifier

3 To drop a table: DROP TABLE [table_name];

4 To remove all data from a table: TRUNCATE TABLE [table_name];

5 To add a column: ALTER TABLE [table_name] ADD [column_name column_type];

SQL Functions

1 Common SQL operators:

• AND, OR, NOT. Logical operators.

• <, >, <=, >=, =, <> (not equal). Comparison operators.

• IS NULL, IS NOT NULL. Null checks.

• LIKE, NOT LIKE. SQL-style pattern matching. Use _ for any single character
% for any sequence of zero or more characters. 'abc' LIKE '_b_' returns
TRUE.

• , ! , *, ! *. Ordinary regular expression matching. ! for negation, * for
case-insensitivity.

2 Arithmetic operators and functions:

Operator or function Name Example Result
+ addition 2 + 3 5
- subtraction 2 - 3 -1
* multiplication 2 * 3 6
/ division 4 / 2 2
% modulo (remainder) 5 % 4 1
^ exponentiation 2.0 ^3.0 8
|/ square root |/ 25.0 5
! factorial 5 ! 120
@ absolute value @ -5.0 5

abs(x) absolute value abs(-17.4) 17.4
ceil(x) least integer ceil(-42.8) -42

div(y, x) integer quotient div(9,4) 2
exp(x) exponential exp(1.0) 2.718

floor(x) greatest integer floor(-42.8) -43
ln(x) natural logarithm ln(2.0) 0.693
log(x) base 10 logarithm log(100.0) 2

log(b, x) logarithm to base b log(2.0, 64.0) 6.0
mod(y, x) remainder of y/x mod(9,4) 1

pi() π pi() 3.14
round(x) round to nearest integer round(42.4) 42

round(v, s) round to s decimal places round(42.4382, 2) 42.44
sign(x) signum (-1, 0, +1) sign(-8.4) -1
trunc(x) truncate toward zero trunc(42.8) 42

trunc(v, s) truncate to s dec. places trunc(42.4382, 2) 42.43
width_bucket(x,b1,b2,n) histogram bucket width_bucket(1,-3,3,5) 4

cos(x) inverse cosine cos(1.05) 0.5
acos(x) inverse cosine acos(0.5) 1.05

3 String operators and functions:

Operator or function Name Example Result

string || string String concatenation 'Post' ||
'greSQL'

PostgreSQL

lower(string) Convert string to
lower case

lower('TOM') tom

overlay(string placing string from int
[for int])

Replace substring overlay('Txxxxas'
placing 'hom'
from 2 for 4)

Thomas

position(substring in string) Location of specified
substring

position('om'
in 'Thomas')

3

substring(string [from int] [for int]) Extract substring substring('Thomas'
from 2 for 3)

hom

substring(string from pattern) Extract substring
matching pattern

substring('Thomas'
from '...$')

mas

trim([leading | trailing | both]
[characters] from string)

Remove characters from
ends

trim(both 'x'
from 'xTomxx')

Tom

upper(string) Convert string to
upper case

upper('Tom') TOM

left(string, n) first n chracters left('abcde',2) ab

lpad(string, n, char) left pad lpad('5',3,'0') 005

reverse(string) reverse reverse('abc') 'cba'

SQL: Setup

1 Easiest way to create a free cloud Postgres instance: Go to supabase.io > Log
in with GitHub > Create an Organization > Create a New Project > [wait a few
minutes, and in the meantime add the line export DATABASE_PWD="your-pwd-here"
to your bash profile] > Go into the new project > Settings (gear icon) > Database
> Connection String (bottom) > PSQL > Copy.

2 macOS local installation: https://postgresapp.com/. Instructions on the land-
ing page for finding your connection string. To install locally on Windows:
https://www.postgresql.org/download/windows/.

3 To connect from a Python session, paste the connection string replacing [YOUR-
PASSWORD] with {pwd}, like this:

import sqlalchemy
import os
pwd = os.envget("DATABASE_PWD") # retrieve password from bashrc
connection_string = (

f"postgresql://postgres:{pwd}@"
"db.bijsjfasiwdlfkjasdfot.supabase.co:5432/postgres"

) # should be your connection string instead
engine = create_engine(connection_string)
connection = engine.connect()
sql = "SELECT * FROM pg_catalog.pg_tables LIMIT 10;"
connection.execute(sql).fetchall()

4 Create a new table in the database from a Pandas dataframe:
import pandas as pd
df = pd.read_csv("https://bit.ly/iris-dataset")
df.to_sql("iris", con=engine)

D
A
T
A
10
5
0

C
h
e
a
t
s
h
e
e
t
·S

a
m
u
e
l
S
.
W

a
t
s
o
n

Document databases

1 Document databases store data in documents that are organized into collec-
tions. Each document is a set of key-value dictionary where the values may be
numbers, strings, booleans, arrays, dictionaries, etc.

{

 "id": 1,

 "abbreviation": "JULIA",

 "description": "Write Julia code

 to solve simple algorithmic

 problems using conditionals,

 functions, arrays, dictionaries,

 and iteration."

}

{

 "id": 1,

 "abbreviation": "JULIA",

 "description": "Write Julia code

 to solve simple algorithmic

 problems using conditionals,

 functions, arrays, dictionaries,

 and iteration."

}

{

 "id": 1,

 "abbreviation": "JULIA",

 "description": "Write Julia code

 to solve simple algorithmic

 problems using conditionals,

 functions, arrays, dictionaries,

 and iteration."

}

{

 "id": 1,

 "abbreviation": "JULIA",

 "description": "Write Julia code

 to solve simple algorithmic

 problems using conditionals,

 functions, arrays, dictionaries,

 and iteration."

}

{

 "id": 1,

 "abbreviation": "JULIA",

 "description": "Write Julia code

 to solve simple algorithmic

 problems using conditionals,

 functions, arrays, dictionaries,

 and iteration."

}

{

 "id": 1,

 "abbreviation": "JULIA",

 "description": "Write Julia code

 to solve simple algorithmic

 problems using conditionals,

 functions, arrays, dictionaries,

 and iteration."

}

{

 "id": 1,

 "abbreviation": "JULIA",

 "description": "Write Julia code

 to solve simple algorithmic

 problems using conditionals,

 functions, arrays, dictionaries,

 and iteration."

}

{
 "index": 1,
 "id": "JULIA",
 "description": "Write Julia code
 to solve simple algorithmic
 problems using conditionals,
 functions, arrays, dictionaries,
 and iteration."
}

Standards

Students

{

 "name": "Rosalia Alexandra",

 "id": "B84222941",

 "medals": {

 1: "gold",

 2: "gold",

 3: "silver",

 4: "gold"

 },

 "participation_scores": [

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 8, "out_of": 10},

 {"score": 10, "out_of": 10}

]

}

{

 "name": "Rosalia Alexandra",

 "id": "B84222941",

 "medals": {

 1: "gold",

 2: "gold",

 3: "silver",

 4: "gold"

 },

 "participation_scores": [

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 8, "out_of": 10},

 {"score": 10, "out_of": 10}

]

}

{

 "name": "Rosalia Alexandra",

 "id": "B84222941",

 "medals": {

 1: "gold",

 2: "gold",

 3: "silver",

 4: "gold"

 },

 "participation_scores": [

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 8, "out_of": 10},

 {"score": 10, "out_of": 10}

]

}

{

 "name": "Rosalia Alexandra",

 "id": "B84222941",

 "medals": {

 1: "gold",

 2: "gold",

 3: "silver",

 4: "gold"

 },

 "participation_scores": [

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 8, "out_of": 10},

 {"score": 10, "out_of": 10}

]

}

{

 "name": "Rosalia Alexandra",

 "id": "B84222941",

 "medals": {

 1: "gold",

 2: "gold",

 3: "silver",

 4: "gold"

 },

 "participation_scores": [

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 8, "out_of": 10},

 {"score": 10, "out_of": 10}

]

}

{

 "name": "Rosalia Alexandra",

 "id": "B84222941",

 "medals": {

 1: "gold",

 2: "gold",

 3: "silver",

 4: "gold"

 },

 "participation_scores": [

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 8, "out_of": 10},

 {"score": 10, "out_of": 10}

]

}

{

 "name": "Rosalia Alexandra",

 "id": "B84222941",

 "medals": {

 1: "gold",

 2: "gold",

 3: "silver",

 4: "gold"

 },

 "participation_scores": [

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 8, "out_of": 10},

 {"score": 10, "out_of": 10}

]

}

{

 "name": "Rosalia Alexandra",

 "id": "B84222941",

 "medals": {

 1: "gold",

 2: "gold",

 3: "silver",

 4: "gold"

 },

 "participation_scores": [

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 10, "out_of": 10},

 {"score": 8, "out_of": 10},

 {"score": 10, "out_of": 10}

]

}

{
 "name": "Rosalia Alexandra",
 "id": "B84222941",
 "medals": {
 1: "gold",
 2: "gold",
 3: "silver",
 4: "gold"
 },
 "participation_scores": [
 {"score": 10, "out_of": 10},
 {"score": 10, "out_of": 10},
 {"score": 10, "out_of": 10},
 {"score": 8, "out_of": 10},
 {"score": 10, "out_of": 10}
]
}

2 Collections are analogous to relations in a relational database, while documents
are analogous to rows.

3 Major differences from traditional relational databases:

• The values of a document may be nested (like an array of arrays of dictio-
naries, etc.).

• Designed to encourage storing data together which is accessed together,
at the cost of denormalization (repeating the same data in multiple places
in the database). Joins are usually expensive.

• Data may be split up for hosting on multiple machines.

4 Document databases should be designed so that neither the number of collec-
tions nor the contents of a single document are set up to grow indefinitely. Rather,
the database should scale by having an indefinitely large number of documents.
Same for relational databases: don’t grow your number of tables or your number of
columns indefinitely. Grow by having large numbers of rows.

Data Dashboards

1 Dashboard products like Tableau, PowerBI, or Apache Superset add a conve-
nient and powerful visualization layer to a SQL database.

2 Adashboarddisplays one ormore charts. A chart is a visualization of the results
of a query on your database.

3 Types of charts:

• Time series. How data changes over time (line charts, time-series bar
charts).

• Composition. How totals break down by category (pie charts, bar charts,
tree maps)

• Distribution. How variables are distributed on the number line (his-
tograms, box plots, horizon charts) or how two or more variables are dis-
tributed jointly (pivot tables, heatmaps, bubble charts)

• Geospatial. How data are situated geographically (points, lines, regions
on a map).

4 A dimension variable is a variable which is used for grouping data. Usually
categorical but can be continuous (like timestamps on a time series plot).

5 Ameasure variable which is one that answers a ”howmuch” question. Measure
variables are the ones that make sense to aggregate (sum, average, count).

6 Dashboard tips:

• Context is king. Help the dashboard consumer appreciate the broader
meaning of each number. Week over week changes and time series plots
are helpful.

• Less is more. Dashboards that are too busy can be overwhelming. Put key
performance indicators (KPIs) in big number charts in a prominent posi-
tion.

• Use tables too. Not every chart has to be geometric. Tables are also useful
dashboard chart.

• Contrast. Ensure that your color schememakes things easy to read (unlike
the bottom left treemap).

7 Creating charts. Charts in Superset are produced by selecting a chart type and
filling in its slots with names of variables from one of your SQL tables. For example,
you supply the time column as well as the numeric column to plot on the vertical
axis for a time series line plot. You can further customize by adding SQL query
elements like WHERE clauses and grouping operations.

How programs run

1 To create a C program, you write the source code in a text file and then run a
compiler to produce an executable that you can run directly on your processor. We
say that C is ahead-of-time compiled (AOT).

2 To create a CPython program, you write the source code in a text file and then
run the Python executable on yourmachine, pointing it to your code. CPython inter-
prets the code, meaning that it executes the instructions directly without first com-
piling functions to machine code. Your Python code is said to be interpreted.

3 You can, alternatively, run your Python program using PyPy, which (as it runs)
compiles your code incrementally into machine code for faster execution. We say
that such code is just-in-time compiled (JIT).

4 CPython and PyPy are examples of runtimes (or runtime systems, or runtime
environments).

5 Programs execute as a nested sequence of function calls. The variables local to
each function call are recorded in a stack frame. The stack frames are organized
into a stack which grows for each function call and which shrinks again when a
function’s execution completes.

6 Memorymay also be allocated in a separate part of RAM called the heap. This is
especially useful for larger data structures, as it saves copying between stack frames.
Objects on the heap are identified by address.

stack

heap

fib

a @ 0x0f1bb989

 def populate(a):

 for i in range(2, len(a)):

 a[i] = a[i-1] + a[i-2]

 def fib():

 a = np.ones(50, int)

 populate(a)

 return a

populate

a @ 0x0f1bb989

1

0x0f1bb989

1
 2

3
 5
 8
 13
 21

34
 ...
 ...
 ...
 12...2

7 In C, memory allocated on the heapmust be explicitly freed when it is no longer
needed by the program. In Python, the runtime identifies when the number of ref-
erences to an object hits zero and frees the memory automatically.

Making Python fast

1 Interpreting code is slower than running compiled code. Therefore,
performance-sensitive numeric computing in Python requires packages designed
to address these shortcomings.

2 NumPy is the main such package. It provides multidimensional numeric arrays
with operations that are implemented in anAOT-compiledC library and called from
Python. Operations that can be conveniently vectorized are ideal for NumPy.

import numpy as np
sum(list(range(100_000))) # pure Python
np.arange(100_000).sum() # NumPy; way faster

3 Numba provides JIT-compilation of select Python functions as a package within
CPython. To use it, write a function involving numbers, booleans, and strings, using
constructs like loops, conditionals, and NumPy arrays. Then call the function jit
on that function:

from numba import jit
import numpy as np

def f(x):
while abs(x) > 1:

x = x / 2
return x

f = jit(f)

def apply_f(A):
return np.array([f(x) for x in A])

apply_f = jit(apply_f)

A = np.array([-3, 0.2, 314, 7.05])
apply_f(A)

4 Numba can only compile certain Python constructs and a few primitive types.
Use njit instead of jit to get an error if you try something that the compiler can’t
handle.

5 Cython quite similar to Numba but AOT instead of JIT. As a result, Cython re-
quires special type annotations and is actually a different language than Python
(note that the array p is allocated on the stack and therefore can’t be very big):

%%cython
def primes(int nb_primes):

cdef int n, i, len_p
cdef int p[1000]

if nb_primes > 1000:
nb_primes = 1000

len_p = 0
n = 2
while len_p < nb_primes:

for i in p[:len_p]:
if n % i == 0:

break
else:

p[len_p] = n
len_p += 1

n += 1

result_as_list = [prime for prime in p[:len_p]]
return result_as_list

